翻訳と辞書
Words near each other
・ Torsten Spanneberg
・ Torsten Spittler
・ Torsten Stein
・ Torsten Stenzel
・ Torsten Stålhandske
・ Torsten Stålnacke
・ Torsten Suel
・ Torsten Sylvan
・ Torsten Tegnér
・ Torsten the Bareback Saint
・ Torsten Thure Renvall
・ Torsion-free abelian groups of rank 1
・ Torsion-free module
・ Torsional strain
・ Torsional vibration
Torsionless module
・ Torsk
・ Torsken
・ Torsken (village)
・ Torsken Church
・ Torslanda
・ Torslanda Airport
・ Torslanda Church
・ Torslanda IK
・ Torslandavallen
・ Torslandaverken
・ Torsnes
・ Torsnäs
・ Torso
・ Torso (1973 film)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Torsionless module : ウィキペディア英語版
Torsionless module

In abstract algebra, a module ''M'' over a ring ''R'' is called torsionless if it can be embedded into some direct product ''R''''I''. Equivalently, ''M'' is torsionless if each non-zero element of ''M'' has non-zero image under some ''R''-linear functional ''f'':
: f\in M^=\operatorname_R(M,R),\quad f(m)\ne 0.
This notion was introduced by Hyman Bass.
== Properties and examples ==

A module is torsionless if and only if the canonical map into its double dual,
: M\to M^=\operatorname_R(M^,R), \quad
m\mapsto (f\mapsto f(m)), m\in M, f\in M^,

is injective. If this map is bijective then the module is called reflexive. For this reason, torsionless modules are also known as semi-reflexive.
* A free module is torsionless. More generally, a direct sum of torsionless modules is torsionless.
* A free module is reflexive if it is finitely generated, but for some rings there are also infinitely generated free modules that are reflexive. For instance, the direct sum of countably many copies of the integers is a reflexive module over the integers, see for instance.〔P. C. Eklof and A. H. Mekler,
Almost free modules,
North-Holland Mathematical Library vol. 46,
North-Holland, Amsterdam 1990〕
* A submodule of a torsionless module is torsionless. In particular, any projective module over ''R'' is torsionless; any left ideal of ''R'' is a torsionless left module, and similarly for the right ideals.
* Any torsionless module over a domain is a torsion-free module, but the converse is not true, as Q is a torsion-free Z-module which is ''not'' torsionless.
* If ''R'' is a commutative ring which is an integral domain and ''M'' is a finitely generated torsion-free module then ''M'' can be embedded into ''R''''n'' and hence ''M'' is torsionless.
* Suppose that ''N'' is a right ''R''-module, then its dual ''N''
*
has a structure of a left ''R''-module. It turns out that any left ''R''-module arising in this way is torsionless (similarly, any right ''R''-module that is a dual of a left ''R''-module is torsionless).
* Over a Dedekind domain, a finitely generated module is reflexive if and only if it is torsion-free.〔Proof: If ''M'' is reflexive, it is torsionless, thus is a submodule of a finitely generated projective module and hence is projective (semi-hereditary condition). Conversely, over a Dedekind domain, a finitely generated torsion-free module is projective and a projective module is reflexive (the existence of a dual basis).〕

* Let ''R'' be a Noetherian ring and ''M'' a reflexive finitely generated module over ''R''. Then M \otimes_R S is a reflexive module over ''S'' whenever ''S'' is flat over ''R''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Torsionless module」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.